Одна из версии истории сиcтемы Common Rail ....

mehan_

Moderator
Команда форума
Город
Минск
Страна
Беларусь
Достоинства архитектуры системы впрыска Common Rail были признаны с момента разработки дизельного двигателя. Ранние исследователи, в том числе Рудольф Дизель, работали с топливными системами, которые содержали некоторые важные особенности современных систем впрыска дизельного топлива Common Rail. Например, в 1913 году патент на систему впрыска Common Rail с механически управляемыми форсунками был выдан компании Vickers Ltd. из Великобритании [McKechnie 1913]. Примерно в то же время в Соединенных Штатах был выдан еще один патент Томасу Гаффу на топливную систему для двигателя с искровым зажиганием с прямым впрыском в цилиндр, использующего электромагнитные клапаны с электрическим приводом. Дозирование топлива производилось путем контроля времени, в течение которого клапаны были открыты [Gaff 1913]. Идея использования клапана впрыска с электрическим приводом на дизельном двигателе с топливной системой Common Rail была разработана Бруксом Уокером и Гарри Кеннеди в конце 1920-х годов и применена к дизельному двигателю Atlas-Imperial Diesel Engine Company в Калифорнии в начале 1930-х годов. [Walker 1933] [DeLuca 2010] [Knecht 2004] [Aird 2001].

Работа над современными системами впрыска Common Rail была начата в 1960-х годах компанией Societe des Procedes Modernes D’Injection (SOPROMI) [Huber 1969]. Однако пройдет еще 2–3 десятилетия, прежде чем регулирующее давление подстегнет дальнейшее развитие и технология станет коммерчески жизнеспособной. Технология SOPROMI была оценена компанией CAV Ltd. в начале 1970-х годов, и было установлено, что она дает мало преимуществ по сравнению с существующими системами P-L-N, которые использовались в то время. По-прежнему требовалась значительная работа для повышения точности и производительности соленоидных приводов.

Дальнейшая разработка дизельных систем Common Rail началась в 1980-х годах. К 1985 году Industrieverband Fahrzeugbau (IFA) из бывшей Восточной Германии разработал систему впрыска Common Rail для своего грузовика W50, но прототип так и не поступил в серийное производство, и через пару лет проект был заброшен [Sachsisches Industriemuseum 2010]. Примерно в то же время General Motors также разрабатывала систему Common Rail для применения в своих легких двигателях IDI [Williams, 1982]. Однако с отменой их программы по производству легких дизельных двигателей в середине 1980-х годов дальнейшее развитие было остановлено.

Несколько лет спустя, в конце 1980-х - начале 1990-х годов, производители двигателей начали ряд проектов по развитию, которые позже были приняты производителями оборудования для впрыска топлива:

Компания Nippondenso доработала систему Common Rail для коммерческих автомобилей [Miyaki 1988] [Miyaki 1991], которую они приобрели у Renault и которая была введена в производство в 1995 году на грузовиках Hino Rising Ranger.
В 1993 году Bosch - возможно, из-за некоторого давления со стороны Daimler-Benz - приобрел технологию UNIJET, первоначально разработанную усилиями Fiat и Elasis (дочерняя компания Fiat), для дальнейшего развития и производства [Stumpp 1996]. Система Common Rail для легковых автомобилей Bosch была запущена в производство в 1997 году для автомобилей Alfa Romeo 156 [Jost 1998] 1998 модельного года и Mercedes-Benz C-класса.
Вскоре после этого Лукас объявил о контрактах на Common Rail с Ford, Renault и Kia, производство которых начнется в 2000 году.
В 2003 году Fiat представил систему Common Rail нового поколения, способную производить 3-5 впрысков / цикл двигателя для двигателя Multijet Euro 4.
Дополнительную информацию об истории систем Common Rail можно найти в литературе [Knecht 2004] [Petruzzelli 2013].

Целью этих программ развития, начатых в конце 1980-х - начале 1990-х годов, была разработка топливной системы для будущего легкового автомобиля с дизельным двигателем. На начальном этапе этих усилий было очевидно, что в будущих дизельных автомобилях будет использоваться система сгорания с прямым впрыском из-за явного преимущества в экономии топлива и удельной мощности по сравнению с преобладающей тогда системой сгорания с непрямым впрыском. Цели разработок включали комфорт вождения, сравнимый с бензиновыми автомобилями, соблюдение будущих предельных значений выбросов и повышение экономии топлива. Рассматривались три группы архитектур топливных систем: (1) распределительный насос с электронным управлением, (2) насос-форсунка с электронным управлением (EUI или насос-форсунка) и (3) система впрыска Common Rail (CR). В то время как усилия по каждому из этих подходов приводят к коммерческим топливным системам для серийных автомобилей, система Common Rail предоставляет ряд преимуществ и в конечном итоге станет доминирующей в качестве основной топливной системы, используемой в легковых автомобилях. Эти преимущества включали:

Давление топлива не зависит от частоты вращения двигателя и условий нагрузки. Это позволяет гибко контролировать как количество впрыскиваемого топлива, так и время впрыска, а также обеспечивает лучшее проникновение и смешивание даже при низких оборотах двигателя и нагрузках. Эта особенность отличает систему Common Rail от других систем впрыска, в которых давление впрыска увеличивается с увеличением числа оборотов двигателя, как показано на Рисунке 1 [Hawley 1998]. Эта характеристика также позволяет двигателям создавать более высокий крутящий момент на низких оборотах, особенно если используется турбокомпрессор с изменяемой геометрией (VGT). Следует отметить, что хотя системы Common Rail могут работать с максимальным давлением в рампе, поддерживаемым постоянным в широком диапазоне оборотов двигателя и нагрузок, это делается редко. Как обсуждается в другом месте, давление топлива в системах Common Rail можно регулировать в зависимости от частоты вращения и нагрузки двигателя, чтобы оптимизировать выбросы и производительность, обеспечивая при этом долговечность двигателя.


2020-12-06_16-21-06.jpg


Рисунок 1. Зависимость между давлением впрыска и частотой вращения двигателя в различных системах впрыска.

Более низкие требования к пиковому крутящему моменту топливного насоса. По мере развития двигателей с высокоскоростным прямым впрыском (HSDI) большая часть энергии для смешивания воздуха с топливом поступала от импульса распыления топлива, в отличие от вихревых механизмов, используемых в более старых системах сгорания IDI. Только системы впрыска топлива под высоким давлением смогли обеспечить энергию смешивания и хорошую подготовку к распылению, необходимую для низких выбросов ТЧ и УВ. Для выработки энергии, необходимой для впрыска топлива примерно за 1 миллисекунду, обычный распределительный насос должен обеспечивать почти 1 кВт гидравлической мощности за четыре (в 4-цилиндровом двигателе) 1 мс скачков на оборот насоса, что создает значительную нагрузку на приводной вал [Breitbach 2002]. Одна из причин тенденции к использованию систем Common Rail заключалась в минимизации требований к максимальному крутящему моменту насоса. В то время как требования к мощности и среднему крутящему моменту для насоса Common Rail были одинаковыми, подача топлива под высоким давлением осуществляется в аккумулятор, и, таким образом, пиковая скорость потока (и максимальный крутящий момент, необходимый для привода насоса) не обязательно должны совпадать с событием впрыска, как есть корпус с распределительным насосом. Нагнетательный поток насоса может быть распределен на более длительную часть цикла двигателя, чтобы поддерживать более равномерный крутящий момент насоса.
Улучшено качество шума. Двигатели DI характеризуются более высоким пиковым давлением сгорания и, следовательно, более высоким уровнем шума, чем двигатели IDI. Было обнаружено, что улучшенный шум и низкие выбросы NOx лучше всего достигаются за счет введения пилотного (-ых) впрыска (ов). Это было проще всего реализовать в системе Common Rail, которая была способна стабильно подавать небольшое количество пилотного топлива во всем диапазоне нагрузки / скорости двигателя.
 
Сверху